Banff Pork Seminar 2018: Highlights

The Banff Pork Seminar is a technology transfer meeting for the pork industry. The conference program is coordinated by the Department of Agricultural, Food & Nutritional Science, University of Alberta, Alberta Pork, Alberta Agriculture and Forestry and other industry representatives. Two Gentec students attended this year, and provided the following reports.

Xuechun Bai

As a first-year graduate student, it was a great opportunity and experience for me to attend the 2018 edition. It was a great honour to present our project, share the idea of our next steps and network with lots of people. The valuable suggestions and feedback they provided will help us improve and develop our project. I was also a volunteer at the event. Although sometimes tiring, it definitely worthwhile to support attendees in this way and see people enjoy the event.

I was most interested in the newest innovations in the pig industry, which introduced some automation technologies that can improve the biosecurity, efficiency and precision of farm management (see more below). The session on swine health and antibiotics, which indicated the trend of raising pigs without antibiotics, was also impressive. It highlighted the importance of improving herd health by making genetic improvements and inspired us to study and work harder as part of Gentec.

Greg Peterson, one of the Peterson Farm Brothers presented the closing plenary in an interesting and innovative way by singing to advocate agriculture and their farm (they also produce entertaining and educational videos on their YouTube channel, some videos are parodies of popular songs and some are vlogs of their farming practices). I think it is really impressive to encourage young people to be more creative and use new methods such as social media to advertise modern agriculture and educate the public on research and the future of agriculture.

I hope I can attend the Seminar next year again, when I will be able to share and present more results and progress of my study.

Ziqi Yang

The ultimate goal of our livestock research studies is to feed the world and improve the quality of animal protein products. In terms of feeding the world, the plenary session provided a good opportunity to understand more about the agricultural economy.

Dr. Larry Martin spoke about “Using Futures & Options to Manage Price Volatility.” He said, “We constantly have a ‘bull bag’ and a ‘bear bag’ of things to consider; that’s what makes a market.” (A bull thrusts its horns up, while a bear swipes its paws downward. These actions are metaphors for the movement of a market. If the trend is down, it’s a bear market.) He explained several chart formations (Stylized Resistance and Support at Contract Highs and Lows) that producers can use to help them know price trends to decide where prices are going and what actions they should take to reduce losses. Essentially, he asked the audience to reframe the question they ask themselves: not “What do I think these hog prices are going to do?” but “As prices change, where do I take action and what action should I take?”

In a similar vein, Ron Plain talked about the “Hog Market Outlook and Pricing Methods.” Although ethanol production led to very high grain prices, causing financial stress for livestock producers in 2006-2013 and PED virus pushed 2014 hog prices to record highs, hog numbers have increased and prices have decreased. The world trade in pork is fairly stable with slight increases in the last few years, which are expected to continue.

In the session on “Personality Typing and Profiling: Effectively Communicating and Working with Various Personalities,” Trish Hyshka helped the audience do the Myers-Briggs personality test, categorizing themselves according to the four main types: “Artisan”, “Rational”, “Idealist” and “Guardian.” She illustrated how the performance and preferences of these personality types differ. Knowing more about your stakeholders’ personality (group or individual) can help determine how to work with them and get optimal results even if you are not in a position of authority. The theory sounds good but, based on my results, the results may not be applicable to everyone. I would prefer to discuss the theory’s applicability with my peers before putting it into practice, or find a course that takes the headline farther.

The Swine Health and Antibiotics session had three speakers. Egan Brockhoff introduced the recent antibiotics guidelines changes to reduce antimicrobial resistance, which include:

  • – removing growth promotion claims from medically important antimicrobials (MIAs),
  • – increasing oversight on importing veterinary drugs,
  • – increasing oversight on the importation and quality of active pharmaceutical ingredients,
  • – mandatory reporting of sales volume from manufacturers and importers to support antimicrobial use surveillance,
  • – facilitating access to low-risk veterinary health products as additional tools for animal health and welfare, and
  • – increasing veterinary oversight over all MIAs.

Clayton Johnson mentioned that animals raised without antibiotics would reduce average daily gain, average daily feed intake, caloric conversion efficiency and increase morbidity and mortality, especially for nursery pigs. Greg Wideman had some good suggestions on reducing these negative impacts, including measurement and review of biological and economic performance, elimination and control of critical diseases, etc. My research on resilience would be another approach.

Steve Savage gave high marks to the performance of global feed production over the past several decades in “The Future of Agriculture: Challenges, Threats, Barriers and Opportunities.” however, if performance is going to increase even more in the future, different growers and producers in the agricultural sector will have to collaborate on creative strategies, such as setting up an independent certification system, to meet increasing demand and reduce the environmental challenges.

In the Newest Innovations session, Lee Whittington shared some technologies for improving pork farm management and production, such as satellite syndromic health surveillance and DrySist cleaning/baking process. Frédéric Fortin, from CDPQ (Quebec Pork Development Centre), introduced three new technologies (individual water intake recording system, infrared thermography and weight and conformation evaluation vision systems) used in the test station to provide faster more accurate data.

The water intake recording system is being used in our pig resilience project with Fred. Since water intake changes before symptoms of disease appear, it may be another health status index for producers to monitor. As well, pig body temperature usually increases after infection, for example from 39.3 °C to 40.2 °C in a single day after PRRSV infection. (Rossow, Kurt D., et al., 1994) Infrared thermography could monitor body temperature and pig movement in real time without handling but the current price (over $10,000) makes it expensive to apply in this way. Vision systems can also view pig movement with a tracking system and create 3D pictures from which to calculate a pig’s weight in the pen. However, since the pig needs to be alone in the pen for the 3D photo, it provides no advantage over traditional weighing methods. It is exciting to be involved in a project that introduces these new technologies as part of our research. This was one of the rewarding aspects of working at the test station for several weeks, as well as learning exactly how the project works at the action end.

Rossow, Kurt D., et al. “Experimental porcine reproductive and respiratory syndrome virus infection in one-, four-, and 10-week-old pigs.” Journal of Veterinary Diagnostic Investigation 6.1 (1994): 3-12.

To read the official proceedings, click here.

STUDENT APPLICATION to ATTEND AWC WEST 2018

DEADLINE FOR COMPLETE APPLICATIONS IS February 16, 2018

Application Form

 

Please return all required materials to: Email: beth@irismeck.com

For further information, please contact us at (403)686-8407

PLEASE NOTE:  The sponsorship covers your registration fee to attend the AWC WEST 2018 conference (including Monday morning workshops, afternoon plenary, reception, and banquet and networking coffee breaks, and on Tuesday breakfast, lunch, coffee breaks and all day conference session) and two nights’ accommodations, Sunday March 25 and Monday March 26, 2018 at the Calgary Hyatt Regency. It is mandatory that you attend a morning workshop and the entire conference or your sponsorship may be revoked and you will have to pay for expenses incurred.

You will be responsible for all travel and additional expenses incurred.

Terms of agreement: The conference will be recorded and photographed at the discretion of Iris Meck Communications Inc. Your application, registration and attendance at the event signifies your permission to utilize your image and/or likeness, name, university and city/province, and words spoken or written about the Advancing Women Conference in print, AWC Website, AWC YouTube and Instagram and online reporting prior to or post of the event for perpetuity.  No limitations or restrictions apply.

Genotyping efforts in the Efficient Dairy Genome Project

The Efficient Dairy Genome Project (EDGP), led by Filippo Miglior at the University of Guelph and Paul Stothard at the University of Alberta, aims to reduce methane emissions (ME) and increase feed efficiency (FE) in dairy cattle by providing genomics-based tools to support selective breeding for these traits. Key to these efforts is collecting individual daily feed intake and methane emission data for cows and heifers in Canada as well in partner countries. With the addition of DNA information, genomic estimated breeding values (GEBVs) will be a much more impactful tool for producers in helping them reach their profitability and breeding goals.

At PAGXXVI, Stothard presented an update on the genotyping side of the project, focusing on work being done to add structural variants (SVs) to the picture. SVs contribute to a large proportion of the genetic variation in cattle but have been largely ignored because they are more difficult to detect than single nucleotide polymorphisms (SNPs). However, it is known from ongoing research, particularly in humans, that SVs have an important impact on phenotype. To begin to understand the influence of SVs on FE and ME, the team analyzed whole-genome sequences from over 500 dairy and beef cattle, the latter through a collaboration with the Sustainable Beef project led by John Basarab. Using high-performance computing and new software for detecting and visualizing SVs, the team has built one of the most complete and well-characterized SV collections to date. This resource will allow us to examine the influence of specific SVs on FE and ME, and could lead to the generation of more accurate GEBVs as well as a better understanding of which genes contribute to variation in these traits.

Amassing a large collection of phenotypic measurements is paramount to these efforts. An exciting recent development in this regard was the installation of 100 GrowSafe bins at Sunalta Farms in Ponoka, Alberta, which will provide the feed intake information on over 300 cows per year. Another important step towards delivering GEBVs was the creation of a centralized database for integrating the data from Sunalta Farms with similar information collected from research herds at the universities of Alberta and Guelph as well as by research partners in the US, UK, Denmark, Australia, and Switzerland. Over the next two years, the team expects to have FE and ME data on more than 8,000 and 3,500 cows, respectively. Although much work remains to be done, the project is well on track to deliver the tools needed to improve these challenging but important traits.

Early results from a new pig disease study could help industry reap profits

Early 2018 was an exciting time for the “natural disease model” established as part of our current Genome Canada project on pig disease resilience and sustainability. This is a very ambitious project that challenges naïve pigs with a cocktail of economically important swine pathogens. The project is two thirds of the way through, with samples and data collected on more than 2,000 pigs. We now have a critical mass of data, and some of the first analyses are beginning to show very interesting results, which we have just presented at PAG, the 2018 Banff Pork Seminar and the 2017 North American PRRS Symposium and NSIF Joint Conference (see YouTube video here).

Gentec CEO Graham Plastow presented the model and some of the latest results at PAGXXVI. The model was dreamt up by a team of researchers working closely with PigGen Canada, which represents the majority of pig breeding companies in Canada. Previous work shows that pigs could be selected for reduced susceptibility to the major diseases porcine reproductive and respiratory syndrome (PRRS) and porcine circovirus associated disease (PCVAD) but these diseases are multifactorial and involve numerous other pathogens so a single disease challenge may not provide the desired answer. Industry was asking: Would selecting for reduced susceptibility to these diseases pay off or should we also include the less destructive but endemic diseases at the commercial level that impact production?

One of the PRRS virus challenges at Kansas State University in our former Genome Canada-funded project intrigued the team and especially Plastow. Even though all the pigs in these challenges were infected and became sick, some recovered quickly and grew as well as the uninfected controls. This phenotype would undoubtedly be attractive to producers, especially if it occurred no matter what the underlying cause. Some challenge studies also suggested that the immune system was different in these pigs, even before challenge. What if these differences could be determined in healthy pigs at the top of the breeding pyramid? If these pigs and their progeny were more resilient to different diseases, it could revolutionize the selection of healthier pigs, potentially improving profits for producers, increasing animal welfare and reducing the use of antibiotics.

Austin Putz, a PhD student with Jack Dekkers at Iowa State University, has shown that new resilience traits being generated in the model are moderately heritable. A graduate student, Laura Tibbs, also working with Dekkers, is using data generated by John Harding’s team at USaskatchewan to show that natural antibodies may explain some of this variation. Other teams at UGuelph and UAlberta are working on their favourite assays and again generating predictors of resilience. The next stage is to validate these results and generate tools that can enable breeders to select for this valuable trait.

There is still a long way to go, but some of these first descriptions of resilience are very encouraging.

Mike Lohuis talks to Gentec

You haven’t been with Semex very long, but what is your role as Vice President, Research and Innovation likely to entail?

“It’s very exciting! This is the first time Semex has had an executive level position focused solely on research and innovation, so it brings new focus on the R&D aspects of our business. It’s important because the industry is changing very quickly, and we need to focus on the technology that’s likely to shape the industry’s future—as developed by in-house and academic partners.”

So what has genomics led to?

“Genomic selection and advanced reproductive technologies have substantially transformed the industry. When I left Canada in 1998, multiple ovulation transfer was already being used to increase the reproductive capacity of elite females. But there was no way to distinguish between full siblings in genetic potential which limited the value of this technology. Since then, it has been interesting to watch as the science around genomic selection evolved to solve that problem and become a reality in the dairy industry.

Simultaneously, ovum pick-up (OPU) and in-vitro fertilization (IVF) technologies became a more effective tool to rapidly produce large numbers of offspring from the most elite young females.

If you consider the rate of genetic gain, increasing selection accuracy, selection intensity and genetic variation help increase the genetic improvement per generation. By reducing the generation interval (the time required to replace parents with their progeny), one can increase the genetic improvement delivered per year. By combining OPU/IVF with genomic selection, we’ve been able to increase selection accuracy of females because of genomic information. With males, we’ve given up some accuracy for speed by decreasing the generational interval. The intensity of selection has also increased because, instead of buying young bulls, collecting semen and creating progeny, which is very expensive, you can simply collect a hair sample, extract the DNA and test it in the lab. This also means that yearling bulls can now be used confidently as mating sires, which has significantly reduced the generation interval. Genetic variation doesn’t change quickly, but we are carefully monitoring the impact of these technologies on levels of inbreeding and genetic variation in the breeding population. At this point, we’ve almost doubled the rate of genetic improvement with the combined use of genomic selection and advanced reproductive technologies.”

 

Genomics doesn’t happen in vacuum. What changes have taken place around it?

“Technological leaps can cause disruptions in the marketplace and often lead to consolidation. You always have early adopters and those that are more risk-averse. In this case, some groups caught on to genomic selection and advanced reproductive technologies early and have done well by it. The marketplace itself can be another disruptor. Retail powerhouse Wal-Mart has continually put pressure on food prices, and now Amazon wants to sell food as well. Large retailers have demanded lower production costs, and producers have had to accept less for their products because there are always farms learning how to do it more cheaply.”

 

And as a result?

“We have significantly commoditized farm products. In some ways, it’s good as it drives down food costs but the return to individual producers has shrunk. So farm size has to go up for producers to make a living. We now have fewer, larger farms that don’t need as many companies servicing them. They prefer one supplier to service more of their needs. In response, we see some companies diversifying and others just getting bigger.”

Can we blame globalization?

“Global trade and the internet makes it easy to sell globally and provide for farmers around the world. Frozen semen is already very transportable, and the larger producers do their own insemination instead of bringing in a technician. If they have their own semen tank on the farm, anybody can deliver semen to that tank. It provides great selection to choose from but there isn’t the same loyalty to the local semen provider.

What role do you think Gentec plays in the industry?

“I got to know Graham Plastow in about 2005 when he was responsible for research at PIC. I always respected his approach and how he worked with multiple academic partners. He would encourage academic partners to develop their research in a way that industry could use and, if they were successful, increase the investment in them. It’s a nice model for generating useful research because you never know where the best innovations will come from.

We take it for granted that academics know what we need. Gentec seems to bring all the parties together. It does a nice job of creating a flow of information both ways.”

A big Thank You to Mike Lohuis for this in-depth interview. Click here to enjoy Part 1 again.

The Path to New Zealand

At our 2017 Livestock Gentec conference William Torres of Cattleland Feedyards focused on Pursuing Evidence-based Outcomes in the Beef Industry. The obstacles can be many… and varied… and driven by producer and end-user perceptions. Often, adopting best evidence-based practices is slowed by not knowing what these best practices are and how to apply them, or by a lack of coordination as to how to share their implementation, costs, and benefits across the various links in the supply chain. Just as often, however, difficulties arise due to nostalgia on the part of the producer aiming to preserve tradition and operate the ranch like “Grandpa” did, and on the part of the consumer seeking “natural” food free of many of today’s productivity-improving technologies that are necessary for the producer to remain in business.

However, several forces are converging to spur change. Environmental pressures and an increasing desire to ensure sustainable production are opening the door slightly and allowing scientific advances to pass through, as is the need to farm in the most efficient manner to ensure that nutritious food is also affordable food.

Stepping back from the idea that industry integration is a requirement, William focused instead on coordination, outlining some of the conditions that facilitate the use of genomics technologies with respect to sorting and managing animals at the feedlot level, and on areas where there is consensus on the social and economic benefit of pursuing change. These areas include the use of pain management tools for castration and de-horning procedures and the appropriate use of antibiotics to ensure animal welfare while preventing the development of antimicrobial resistance. When used as part of a disciplined pre-conditioning protocol, these measures help industry address animal welfare concerns and help optimize producer efforts and profitability.

Although not completely reflected in the edited version, William also spoke of the need to engage with those who disagree with you or don’t necessarily think like you, if only because they are often your customer. At its very worst, evidence allows us as an industry to do what society expects of us (even when society is ill-informed or we don’t agree with the direction of change) in a manner that imposes the least burden on us as producers. On more moderate ground, evidence also allows us as an industry to defend practices that are poorly understood, such as making the case that the use of medications in treating sick animals is the humane thing to do. At their best, evidence-based practices allow producers to make informed decisions on how to collaborate within the system to deliver the best possible beef in the most efficient and sustainable manner.

That said (and as an editor’s aside), there are also instances when the public shines a light on an industry practice that, while historic in precedent, is hard to justify today. Two practices often mentioned in the lay press are dehorning and branding. Industry is responding through the use of pain control medication in dehorning procedures and the use of genomics to select for homozygous polled bulls. Genomics also has the potential to supplant branding through the combination of the existing animal ID practices with DNA-based traceability markers. To view a summary of William’s talk, please click here.

Pursuing Evidence-based Outcomes in the Beef Industry

At our 2017 Livestock Gentec conference William Torres of Cattleland Feedyards focused on Pursuing Evidence-based Outcomes in the Beef Industry. The obstacles can be many… and varied… and driven by producer and end-user perceptions. Often, adopting best evidence-based practices is slowed by not knowing what these best practices are and how to apply them, or by a lack of coordination as to how to share their implementation, costs, and benefits across the various links in the supply chain. Just as often, however, difficulties arise due to nostalgia on the part of the producer aiming to preserve tradition and operate the ranch like “Grandpa” did, and on the part of the consumer seeking “natural” food free of many of today’s productivity-improving technologies that are necessary for the producer to remain in business.

However, several forces are converging to spur change. Environmental pressures and an increasing desire to ensure sustainable production are opening the door slightly and allowing scientific advances to pass through, as is the need to farm in the most efficient manner to ensure that nutritious food is also affordable food.

Stepping back from the idea that industry integration is a requirement, William focused instead on coordination, outlining some of the conditions that facilitate the use of genomics technologies with respect to sorting and managing animals at the feedlot level, and on areas where there is consensus on the social and economic benefit of pursuing change. These areas include the use of pain management tools for castration and de-horning procedures and the appropriate use of antibiotics to ensure animal welfare while preventing the development of antimicrobial resistance. When used as part of a disciplined pre-conditioning protocol, these measures help industry address animal welfare concerns and help optimize producer efforts and profitability.

Although not completely reflected in the edited version, William also spoke of the need to engage with those who disagree with you or don’t necessarily think like you, if only because they are often your customer. At its very worst, evidence allows us as an industry to do what society expects of us (even when society is ill-informed or we don’t agree with the direction of change) in a manner that imposes the least burden on us as producers. On more moderate ground, evidence also allows us as an industry to defend practices that are poorly understood, such as making the case that the use of medications in treating sick animals is the humane thing to do. At their best, evidence-based practices allow producers to make informed decisions on how to collaborate within the system to deliver the best possible beef in the most efficient and sustainable manner.

That said (and as an editor’s aside), there are also instances when the public shines a light on an industry practice that, while historic in precedent, is hard to justify today. Two practices often mentioned in the lay press are dehorning and branding. Industry is responding through the use of pain control medication in dehorning procedures and the use of genomics to select for homozygous polled bulls. Genomics also has the potential to supplant branding through the combination of the existing animal ID practices with DNA-based traceability markers. To view a summary of William’s talk, please click here.

Q&As with Mike Lohuis

What was your role as Director, Environmental Strategy for Agriculture at Monsanto about?

“That role involved research regarding what impact agriculture has on the environment. I was focusing specifically on climate change. For example… What has happened, how it is affecting agriculture, and how agriculture could help mitigate climate change.”

Why would a seed company need somebody to do this?

“Agriculture is the second largest source of emissions on the planet after power generation. Even though GHG-emitting agricultural practices are individually not that significant, they become so simply because agriculture occupies such a wide surface area of our land mass. For example, fertilizers aren’t applied in huge amounts, but they contain compounds such as nitrous oxide, which has 300 times the global-warming potential of carbon dioxide. And methane has 25 times the warming potential.

My team and I were trying to understand the problem and solutions. We worked with a variety of academic and public groups to understand the modelling behind GHG emissions. This included getting information from Gentec on feed efficiency and its potential to mitigate this problem.It was really interesting to discover where emissions come from and which ones we can do something about.”

What attracted you to the role?

“I’ve always been interested in sustainability and modelling (I’m a closet geek!). I wanted to know how we could prepare for climate change and how we could mitigate it.

Farmers are enthusiastic about faming and being part of the solution. They do a great job of feeding the planet—but wouldn’t it be nice if they could help save it, too? The thing is, when they hear talk about climate change and mitigation strategies, they immediately think of implications for their business, such as a heavier tax burden. So if you ask them if they believe in climate change, they might say ‘No,’ not because they’re climate-change deniers but because they’re more afraid of the proposed solutions than of the problem.”

What came out of that work?

“We found that tillage and fertilizers were sources of GHGs that could be mitigated. No-till agriculture and cover crops are great examples of how to reduce emissions and the need for fertilizers, build carbon in the soil and preserve the topsoil at the same time. We had a model that predicted that you could get to carbon-neutral from a cropping standpoint. So if you did it right, you could offset all your emissions from use of fuel and fertilizer by building the carbon back into the soil. Sequestration and storage in the soil are a great counterbalance to activities on the land.”

That’s great! Does the model work everywhere?

“Well, it could be used in different climates but it’s easier in temperate zones. In tropical climates, it’s so much harder to build carbon because it breaks down under lots of rain, heat and sun. Plus, weeds grow faster and herbicides are less available, so more tillage is needed. That said, rainforests do a great job of storing carbon but in the canopy, not necessarily in the soil. In the Northern Hemisphere, we can do a lot more in terms of reducing emissions in agriculture.”

What did you learn from talking to consumers?

“At Monsanto, we were acutely aware of criticisms and what we could have done to right the story. Unfortunately, we can’t turn the clock back, and it’s hard to counter some of the bad press.

There are plenty of lessons we can learn from the past. We know that food is an emotional issue, and when a topic is emotional, scientific arguments don’t hold much sway. We also know that trust is paramount. How do you establish and keep trust with consumers? The number one factor associated with trust is transparency.”

How do you build trust?

“As scientists, we tend to understate the risks and overstate the benefits because we like shiny new technologies. So two things can help clarify the situation: 1) Transparency about risk versus reward and 2) Good story tellers who can effectively speak to a broad audience about the issues. What we don’t want is a situation where consumers want more information, but all they see are images of buildings, machinery and technology. The best story-tellers are farmers and producers because they’re doing the job every day. They are the genuine voice.

Some consumers are critical of agribusiness. They believe the only thing industry is interested in is making money. Of course, in the short term, that’s correct. But industry wants to make money in the long term as well. So agribusiness is constantly evaluating risks and liabilities, but shouldn’t expect to fly under the radar when it comes to new technology. We have to get out there, and talk about what we’re doing. The science can’t be left to speak for itself when emotion is at play.”

What role has the internet played in all this?

“Consumers used to get their information from credible sources like journalists, the news, experts or scientific journals. But now, everybody is an expert and can easily publish information. That doesn’t mean the information is vetted. Activists have found an effective tool in social media, and they tend to use the spaghetti principle (fling a credible-sounding meme against a wall and see if it sticks) to find out if an issue has legs.

An example is the story that circulated claiming GMO crops caused farmers to commit suicide. We thought that was ludicrous, but it stuck because farming in India has long had a problem with suicides that were often tied to bankruptcies. Yes, some farmers had invested in GMO seed, but without the financial safety net of crop insurance like in North American and Europe, they went bankrupt if crops failed. We even found that, often, the purported GMO seeds were counterfeit. It took so much effort to disprove that story, and it still lingers today like an urban myth.”

Stay tuned for Part 2 in next month’s newsletter!

Cow-Forage Gentec Tour

Many attendees expressed how enjoyable their Tour experience was, from the information sessions held on the way to the tours, the lunchtime talk by UC Davis’ Charlie Brummer, to the student posters in the pavilion.

The day was meant to educate, and that goal was achieved. Attendees ranged from producers, academics, and students, to individuals from government and non-profit organizations as well as agriculture-related exhibitors. Everybody had the opportunity to learn about methane gas emissions, overwintering, cow-calf productions, and the pivotal role genetic information plays in agricultural operations.

At the pavilion, John Basarab (see below) from Agriculture and Agri-Food Canada discussed the development and application of EnVigour HX™, an Alberta-developed genetic analysis that gives producers pertinent information on their cross-bred herds, which then allows them to make more informed choices to gain a more economically efficient herd.

 

Legume Tour

The Legume Tour was organized by the Grey Wooded Forage Association. The multi-site tour aimed to educate producers and researchers on the interaction between forage pasture and cattle grazing. The theme of the first stop was the growth response of different cultivars of alfalfa for wintering and grazing. Dr. Vern Baron and Darren Bruhjell demonstrated the winter hardiness and regrowth of each alfalfa cultivar, and explained that each trait is usually exclusive of the other.

Next, Dr. Charlie Brunner (see below) presented on breeding for reduced dormancy while maintaining winter hardiness in alfalfa in the hope of developing an alfalfa crop that is resilient to cold and shorter day-lengths but that can attain high regrowth after grazing. Selection methods involved growing alfalfa in cold stress and selectively breeding for those that survive. Since alfalfa cultivars are made up of genetically variable individuals, exerting a stress will select for individuals with higher tolerance to that particular stress.

The second and third stops demonstrated the establishment and management of forage pasture in relations to cattle grazing. Murray Abel showcased his pasture, and pointed out that cattle prefer broad-leaved forage like dandelion and orchard grass over woodier Brome grasses. However, a mixture of grass pasture and legumes helps to maintain healthy rumen microbial populations in cattle which increase average daily gain. He also demonstrated that the mixture of sainfoin in grass pastures outperforms alfalfa mixture in grass pastures in all key nutritional parameters, and does not cause the same level of bloat that alfalfa does.

The tour also stopped at pasture sites that have been grazed in the last few months to examine their state of regrowth. An established, efficient pasture should not require any replanting or reseeding because cattle grazing helps with seed dispersal and fertilization of that land.

Improving late season forage production using breeding, genetics and genomics

Charlie Brummer’s presentation was a highlight of the day. His talk focused on work being done with forages, alfalfa in particular, using breeding and genomics to improve forage varieties and production. To drive the message home, he highlighted the dramatic difference in the tonnes of forage produced per hectare, and how dramatically that production falls as one moves North, even within the United States. This obviously has an impact on the degree of supplemental feeding producers do, on the stocking rate a particular pasture can tolerate, and ultimately on the cost of production.

Traditional breeding programs have tried to balance winter hardiness and grazing tolerance while shortening the dormancy period and maintaining or increasing the yield according to the temperature and sunlight patterns of a given geography.

Newer methods using genomic SNP technology (the same technology used to determine parentage and to select for specific traits in cattle and other livestock species) is helping to select for forages with a lower likelihood of winter injury and shorter-than-expected dormancy periods that, when combined, result in greater annual forage production. And just as in animal production, the phenotypic information is critical in building the database of what a genetic variation implies for the next generations.

Charlie concluded that breeding and genomics provide a valuable tool in increasing yields, and that the ability to affect the dormancy period (particularly at higher latitudes) can improve late-season yields. The ultimate strategy may be to combine winter and grazing varieties to optimize the benefits seen in high-yielding pastures.

The implication for ranchers is clear. BCRC research suggests that every additional day that herds can remain on pasture saves the cow/calf sector $3.6 million.

Genomics tools for beef cattle

This session, given by John Basarab, ran several times during the day. For the very last session, both sets of bleachers were filled to overflowing, forcing people to stand around the perimeter of the room.

John’s main theme was on the impact of EnVigour HXTM, a new tool measuring hybrid vigour in cross-bred cattle developed by Alberta Agriculture and Forestry staff at the Lacombe Research Station with Livestock Gentec and project partners. EnVigour HXTM gives commercial producers three pieces of information: parentage, breed composition, and a vigour score. From this, they can assign parentage back to the sire, enabling them to determine which bulls are performing well (lots of healthy calves), poorly (difficult births or those with poor conformity) or not at all. Similarly, with information on breed composition, they are better able to match their herds in terms of balancing or employing breed differences based on how they want their herds to preform across various traits.

The most compelling outcome demonstrated as a result of the research (and of EnVigour HXTM) is that, by increasing the degree of “Vigour” in their herd, producers can significantly increase the longevity of their cross-bred heifers (see figure below). The impact of this, through increased pounds of weaned calves produced and the decrease in retained heifer costs, is estimated to be more than $160 per year per cow, or $80,000 per 100 cows over 5 calvings, when comparing low-vigour and high-vigour herds.

Calgary Stampede: UFA Cattle Trail

The UFA Cattle Trail at the Stampede features a live and interactive exhibition of the beef cattle industry in Canada. It focuses on the entire beef production chain from pasture to plate, and aims to give the public some insight on where our food comes from.

The live cattle exhibit showcased different breeds of cattle in a pen to demonstrate how GrowSafe technology allows researchers and producers to determine individual animal food intake vs. growth more accurately. Visitors enjoyed trying out the interactive auction mart and cattle-sized weigh-in chute. The miniature feedlot set-up demonstrated industry innovation and processes that ensure the safe and efficient production of beef. The feedlot exhibit also touched on the different types of feed and at what part of the growth cycle to yield the highest daily gain. Other parts of the Cattle Trail focused on animal welfare, medicine and transportation, and a large display showed the benefits of eating beef and how it can be prepared to provide a healthy and tasty protein option every day.

The goal of our Livestock Gentec booth was to highlight the importance of genomics in breeding better cattle—which raised a lot of interesting questions from visitors. People were curious about how to select which traits via genomics and how it might affect the cattle’s health and meat quality. A number of visitors expressed concern about humans eating meat from an animal with genetic abnormalities. There was also a lot of interest in how DNA testing works, and from what samples types we can obtain via DNA for testing. People were intrigued at how accurate high throughput DNA testing can be and how much information can be obtained from a relatively small DNA chip.

Due to our positioning next the feedlot setup, we received a lot of questions about the use of hormones and antibiotics on animals. Most people were initially leery about the use of hormones and antibiotics on cattle due to the negative ad campaigns and misinformation on the internet. However, when the use of antibiotics was explained to them from the angle of animal welfare, efficiency and sustainability, almost all of them left with a more positive view. We also stressed that Health Canada sets a very stringent limit of the level of these substances allowed in consumed beef, which are far below the amount that could pose a health concern. Most people were pleasantly surprised at how much producers care about their animals’ welfare and living conditions.

We also received a lot of questions about Angus beef and the Angus brand. It was very interesting to hear a good proportion of people assume that Canada only produces Angus beef or that Angus beef is the direct representation of Triple A meat. Some assumed that the only way to choose good quality beef is to look for the Angus brand. Many are unaware that Certified Angus beef is a brand, and that a lot of the good beef in grocery stores is not Angus. We had some very in-depth conversations about why each breed has different traits that producers might want: e.g. maternal traits and marbling in Angus, overall larger sized and more docile behaviour in Herefords. I brought up the use of cross-breeding cattle and how increased heterosis will yield a much healthier animal. We also included how Envigour HX ™ could help producers determine what breed composition they have in their herd and how they could use the tool to help determine if they have achieved their breeding goals. We spoke to a couple of aspiring producers from abroad who were interested in bringing some North American cattle seedstock and breeding into their population.

The overall theme of conversations at the Cattle Trail was one of education and interaction. Visitors were inspired by the showcase and willing to strike an open conversation on any question about the beef production and the beef industry. Most people were concerned about how the foods on their plate affect their health. The major topics of conversations circled around food safety, nutrition and animal welfare. I gathered that the general public find food production rather confusing. As industry representatives, we should create more awareness through public exhibitions like the UFA Cattle Trail or social media to engage people in open discussions about our food-processing pipelines and shedding a positive light on the use of science to improve food production, safety and sustainability

Olds FutureFarm Expo

By Janelle Jimenez

The objective of the Olds FutureFarm Expo was to help producers bring technological advancements to their farming operations. As such, it included many demonstrations, tours and agriculture-based seminars over a three-day period (July 6-8, 2017); and over 100 exhibitors were set up indoors and outdoors to market their products ranging from the business side of farming to the application of future-forward techniques and tools. Companies involved with bioremediation and sustainable farming technologies including the use of microbial inoculations and bacterial catalyst to open up previously unusable land for farming were strongly represented. There was also big focus on using drone technologies.

The winner of the Canada 150in150 competition (Delta placed second) gave a thrilling presentation on a project that used the waste grain from beer production to grow edible mushrooms. He demonstrated how he was able to grow a specific strain of mushrooms in a fraction of the time they take to grow in nature. In total, 23 seminars took place, with other themes on drone navigation to help manage farms and survey land accurately, the use of continuous-charging battery-power systems, and carbon tax credits. There was also discussion regarding pest control, farm energy management, indoor aeroponic farming, and the pros and cons of GE/GMP alfalfa.

A number of educational tours also took place. The brewery tour took participants through the Olds College teaching Brewery and the hops crop, and allowed participants to taste the locally-brewed beers. Participants also toured the botanical gardens and constructed wetlands, where over 20 acres of wetland used to demonstrate the treatment of water runoff from the college campus.

The second tour gave information on a research project using RFID-based (ID tags that transmit data using radio frequency) data acquisition software that tracked animals’ food intake to learn about feed conversion into muscle. Another project examined how thermography can help detect bovine respiratory disease, with the goal of commercializing the technology and increasing cattle value in the industry.

As at the Cattle Trail, Ying Yee and I did our best to interact with visitors, and generally the feedback on our presentations and messages was very positive. Many people were interested in the upcoming Cow Forage Gentec Tour at the Lacombe Research Centre.

Overall, the event offered a great variety of interesting and useful themes that of great interest to the agricultural community.