One challenge, many answers, three approaches

On August 19, an article titled, “Is the way cattle are grazed the key to saving America’s prairies?” made headlines in The Guardian. It describes how cattle are being turned out onto the Zumwalt prairie, the largest surviving native bunchgrass prairie in North America, to find out how grazing can be managed to benefit this ecosystem.

The very next day, folio released an article called, “Animal grazing reducing biodiversity around the world: study.” It summarizes a study showing that livestock grazing reduces the number and diversity of animals that depend on plants.

At first blush, it seems these studies are heading in opposite directions.

“Not necessarily,” says Cameron Carlyle, Associate Professor at UAlberta’s Faculty of Agricultural, Life and Environmental Sciences. “It depends partly on the research question and the approach. Both articles are examining native grassland but the first article focuses on conservation through easements and a particular grazing management system, while the second has a narrower question, only taking into account grazed vs. non-grazed land. If grazing prevents conversion to cultivation, for example, then habitat and biodiversity are likely being conserved even if grazing does reduce biodiversity compared to an ungrazed state.”

Instead, Carlyle is proposing a systems approach to enhancing grassland biodiversity and ecosystem services.

“Our idea,” he continues, “is to align cattle genetics and behaviour with desired landscape outcomes. Cattle behaviour affects landscapes as they decide where to search for food and which plants to eat. There’s some evidence of genetic controls on these decisions, for example, whether individual cows like to feed at top or bottom of a hill. If we can identify the genetic markers for those choices, we can have a better distribution of animals on the landscape or modify their effects on the landscape through the of types of plants they like to eat.”

Carlyle and multidisciplinary team including Livestock Gentec researchers propose to examine the genetic factors determining why cattle select particular habitats and plants, the vegetation traits that drive those choices (such as chemical content and nutrition) and the subsequent effects on microbial processes and ecosystem services. Their theory is that, as well as affecting the cows’ choices in what they eat, secondary plant compounds may also have a profound influence on their microbial symbioses with microbes, and hence digestion outcomes, which can affect production (nutrient uptake and weight gain) and environmental metrics (feed waste and methane emissions, etc.).

“If the condition of the grasslands improves in a way that also improves the producers’ bottom line, he says, “they stand a better chance of being protected than of being converted into cropland or subdivisions.”

VBP+: The beef you want is the beef you get

In 2018, McDonald’s became the first company in Canada to offer beef from certified sustainable sources. Harvey’s and others followed suit. But what does “sustainable” mean in this context? And who does the certifying?

“Well, McDonald’s has committed to source beef from operations certified to the Canadian Roundtable for Sustainable Beef’s (CRSB) standard through the Canadian Beef Sustainability Framework,” says Shannon Argent, Business Manager at Verified Beef Production Plus (VBP+). “So its suppliers need to demonstrate best practices on indicators such as soil health, water conservation, biodiversity, animal welfare and workers’ rights. As for the certification… VBP+ takes care of that.”

VBP+ provides training and resources for producers to use to add value to their operations, and the certification, after an audit, to prove they have met the required standards. Certification must be renewed annually. There are 60 indicators, all assessed against 36 of the CRSB’s indicators and other equivalencies, such as the Canadian Food Inspection Agency’s on-farm Food Safety Recognition Program and the National Farmed Animal Care Assessment Framework (VBP+ is pursuing accreditation for the latter).

“We are the link between the producers’ education to deliver what consumers want and the proof that it is being done,” says Argent. “In getting accredited by multiple organizations, we can achieve multiple outcomes (certifications) for producers with one visit.”

Certification is voluntary. If a processor wants to make certified-sustainable beef available to its customers, it may encourage producers through financial incentives. And while an extra dollar in their pockets is great, many producers are keen to be part of the solution to greenhouse gas emissions, food safety, antimicrobial resistance and animal care issues anyway. Education ups their game, and certification provides the proof of what they’re doing.

Each provincial commodity organization has a designated coordinator to provide webinars and workshops, and the national program provides an online training platform that is being updated to ensure content keeps up with the changing times. The coordinators educate hundreds of producers every year on what’s new in the field, how to implement best practices on their operation and how to document an audit. As such, education is the necessary first step to certification. A steady proportion of them advance to the full certification stage. Today, more than 60% of Canada’s beef production comes from VBP+-trained operations, and 20% of production comes from audited operations.

Proving sustainability through certification is one thing; demonstrating it to the public is another. As part of the education, producers are encouraged to contribute to debunking disinformation by opening their operations through social media to show the positive results of best practices.

Like every other sector, COVID-19 has slowed down the rate of certifications. To that end, VBP+ is considering remote audit technologies that can perform audits in locations where it’s not financially feasible to send an auditor. These technologies would be evaluated against an on-farm audit to make sure the outcomes are the same. If successful, they may provide a great opportunity to keep costs down in a low-margin market.

Genetics is another technology that plays a role in certification, as producers must demonstrate their innovations to improve quality and produce more beef using less resources. Testing using a tool like Delta Genomics’s EnVigour HX™ can be used to prove innovative practices. EnVigour HX™ is the first made-in-Canada genomics tool for crossbred beef cattle, combining parentage verification, genomic breed composition, and a simple Vigour Score (assessment of hybrid vigour) to assist in replacement selection.

“We often hear that beef production and its advantages and, conversely, how beef reaches customers are poorly understood,” says Argent. “We hope that, by providing these services and contributing to the broader message, VBP+ can help to bridge the gap.”

From cattle to COVID-19: An unlikely journey

By Mikolaj Raszek, PhD

The lead-up

After finishing my PhD in Biochemistry, I took a break from science to think about what I wanted to do with my life and my degree. Eventually, I figured out that I wanted to start a business that provided access to DNA testing to those in need or who were curious to learn about their potential predispositions. Having made that decision, I needed an opportunity to surround myself in the study of DNA and genomics, to firm up my background and get some hands-on experience. This is exactly what happened at Livestock Gentec, one of my very favourite career opportunities. I still have fond memories of my colleagues there and the quality of the research.

By the time I arrived, I knew a bit about human genomics and the technologies used to delve into genetic data—but nothing about cattle. Lab work was no problem. I was surrounded by so many talented people that learning was easy. We studied gene expression differences of healthy cattle versus those impacted by bovine respiratory diseases. As a process of validation, we worked with RT-qPCR using cattle RNA with one of the best in-line instruments at the time: this type of assay that is now used to identify SARS-CoV-2 coronavirus in human samples. Calibrating the instruments is no easy feat so, now that these assays are run in millions around the world to test for SARS-CoV-2, I can tell you that some highly sophisticated efforts are being made to identify infected people.

But getting up to speed on the general background on cattle genetic research…? That took many hours and many journal articles. I pitched to Graham Plastow, Gentec CEO, that I should write a review of my information blitz, which led to an interesting niche topic for Leluo Guan and me: use of genomic technologies to study infectious agents in cattle. I loved that project precisely because it gave me the opportunity to learn from my bosses how to think outside the box when researching information. This was also my first foray into the serious study of viruses and their genetics, which quite fascinated me. I even proposed a project to study the cattle virome, but this was not even an emerging field at the time.

Eventually, Merogenomics was born, a company dedicated to building a catalogue of medically-relevant DNA sequencing services for clinics interested in setting up in this niche territory, and end-users who need such services. It has been a labour of love, fired by passion.

The redirect

The outbreak of the COVID-19 pandemic brought the company to a standstill. From the start, I suspected that we were witnessing an event not to be dismissed. My interest in viral genetics, born at Livestock Gentec, was reignited, and I have been deep in SARS-CoV-2 scientific literature.

To continue Merogenomics’s mission to help those in need, I’ve published blog posts on SARS-CoV-2. The first was on the origins of the virus itself and what science had to say about it, as this was hot topic from the start, only grabbing more media attention as the pandemic ballooned and people sought answers. In the second article, I switched from the genome of the virus to our own genetic predisposition. The third article was dedicated to current research into drugs, and the fourth on building immunity and vaccination. (This pattern matched that of the Gentec review. Apparently, those lessons stuck hard!)

The way forward

All this seemingly unconnected knowledge came together in February 2020 when I became a member of a multi disciplinary and multi-organization team dedicated to developing a new detection system for SARS-CoV-2 for rapid population screening. The team comprises many PhDs but most of them don’t have a molecular sciences background, opening the door for me be a valuable source of knowledge. Once again, I am in totally over my head—and I love it. Once again, I’ve had to learn at a blistering pace. I meet many business people, researchers and even physicians working directly with hospitalized patients in some of the most afflicted areas of the world.

Never did I imagine that learning about cattle viruses would one day lend itself to trying to fight a human pandemic.

 

Coronavirus: the latest zoonose

Coronaviruses are a family of zoonotic viruses; zoonotic meaning that they can pass from animals to people. SARS is one example, ebola, MERS and H1N1 are others. The sources have been animals as varied as pigs, monkeys, poultry, civet cats and camels. The strain of coronavirus (named COVID-19) currently in the news has been declared a “public health emergency of international concern.” The race to find a vaccine or prevent deaths is intense. To help us understand more about coronaviruses and zoonoses in pigs and people, Gentec spoke to Dr. Egan Brockhoff, Veterinary Counsellor for the Canadian Pork Council.

Gentec: How do we know that the source of a human disease might be animals? How do we know to do a “reverse diagnosis?”

Dr. Egan Brockhoff: Scientists do a whole-genome sequence of the bacteria or the virus, then they look for similarities with other known bacteria or viruses. That indicates where it’s most likely to have originated. It might sound simple but it involves significant scientific exploration. For COVID-19, the pangolin seems to be the animal source. The fact that these animals are eaten makes them a likely source of the jump, but that still needs to be confirmed.

Gentec: Porcine epidemic diarrhea (PED) virus, which is a pretty nasty pig disease, is also a coronavirus that could spread to humans. Why hasn’t it?

Dr. Egan Brockhoff: PED is a delta coronavirus. COVID-19 is a beta coronavirus. Even though they’re part of the same family, they’re only very distantly related. PED is an enteric virus that causes intestinal illness whereas the beta COVID-19 infecting humans is a respiratory virus. Because they’re so different, PED isn’t likely to jump over to humans.

Also, COVID-19 is a new virus. Once it has adapted to its host, it’s not likely to jump back to animals. To give you an example, MERS came from camels and can still be found in camels. But when viruses adapt to a new host, they don’t re-adapt to their original host as easily. Now that COVID-19 has become a zoonose and infected humans, we’re not very concerned that it will jump back. If it does, it would probably go to its most recent host.

Gentec: We’ve seen how fast and how wide zoonoses can spread. Which organizations are involved in containing an outbreak?

Dr. Egan Brockhoff: On a global level, the World Health Organization is responsible for human health, and the OIE (World Organisation for Animal Health) is responsible for animal health. At the federal level in Canada, Public Health Agency of Canada and Health Canada are the competent authorities for human health, and the Office of the Chief Veterinary Officer for Canada and the Canadian Food Inspection Agency are the competent authorities for animal health. Then each province has a chief medical and veterinary officer as well. In other words, many organizations must work together to find the best methods of control.

Gentec: So how do they talk to each other? What do they monitor? How do they decide on the best actions to take?

Dr. Egan Brockhoff: Both the WHO and the OIE are in constant back-and-forth communication with their member states. In terms of COVID-19, both were consulted, and the WHO has now landed a body of experts into China to work on this disease. In fact, renowned Canadian epidemiologist Dr. Bruce Aylward will be leading that team.

Canada and other developed nations have a very robust infrastructure for communicating with the WHO and OIE but in other countries, that may vary more. In this situation, China is working very hard with its public health authorities to understand and contain the disease, and the WHO is assisting and communicating back to the OIE. But let’s be clear, COVID-19 is not an animal health outbreak, it’s a public health outbreak. The OIE doesn’t have to be highly engaged beyond helping the authorities understand the coronavirus in its most recent species.

Gentec: What actions are being or have been taken to mitigate spread of PED in animals?

Dr. Egan Brockhoff: Again, let’s be clear. PED is not a zoonose, it’s a highly infectious enteric virus—for pigs. So bioexclusion, that is, the external biosecurity efforts to take to keep disease out of the farm are key. For PED, critical steps including washing all incoming transports to ensure they are virus-free, making sure you limit access to the controlled access zone around the farm, ensuring that people who must enter the farm wear boot covers, remove their footwear and clothing when they step over the line and go through a shower on the way back. And of course, wearing farm-specific clothing.

African swine fever kills nearly all infected pigs. The same measures of bioexclusion will keep it out of the farm. Because it’s not an aerosol virus (transmission through droplets or particles in the air), it moves by allowing infected animals or products to move on or off a farm. For example, feeding contaminated food items to healthy pigs will expose them to this disease. Because people can’t get it, good basic bioexclusion will keep the virus from affecting the population.

Gentec: The founding head of Ontario Public Health has spoken publicly that travel bans for zoonoses are ineffective, xenophobic and not evidence-based. Do you agree? 

Dr. Egan Brockhoff: Every disease has unique features in terms of infectivity rates and routes by which it infects, so the story changes a bit but in general, that’s accurate. The WHO echoed those sentiments as well. Travel bans are not necessarily effective. Typically, with infectious diseases, people are infectious before they have clinical signs. The flu is a good example. All the early work done on COVID-19 echoes that. So, people can move all over the world before they know they’re infected. At best, travel bans can slow the spread but not contain it.

Gentec: Do you find that the public are informed and correctly informed about zoonoses, particularly those coming from pigs?

Dr. Egan Brockhoff: The public has every opportunity to access good information from the competent public health authorities. But there’s absolutely no question that social media has made it challenging for the public because there’s so much non-professional information out there as well.

Gentec: What’s your message to the public about zoonoses?

Dr. Egan Brockhoff: Washing your hands is one of the most effective things you can do to protect yourself from all infectious diseases, whether they come from other humans or from animals. Use good sanitation in the kitchen. And cook meat to a temperature that kills bacteria and viruses. You can use a food thermometer for that. Meat doesn’t have to be burnt to a crisp to be safe. And you don’t have to become a vegetarian either. Plenty of foodborne illnesses come through plants.

Gentec: Thank you, Dr. Brockhoff, for taking the time to do this interview.

Beef cattle work in harmony with the grasslands

The importance of biodiversity is widely recognized. High profile reports include the UN IPBES 2019 report (United Nations Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) and the OECD report entitled Biodiversity: Finance and the Economic and Business Case for Action (OECD, 2019). A coalition of 19 agriculture-centric companies called One Planet Business for Biodiversity has formed, aimed at scaling up regenerative agriculture to protect soil health, boosting cultivated biodiversity, and restoring and protecting high-value natural ecosystems, among other things. In a related initiative, General Mills has initiated a new focus on soil health in Canada and the US. Agriculture is both a major force for biodiversity protection and an impediment to protecting biodiversity. Public agencies and global supply chains are recognizing the risks to their future if biodiversity is not protected.

Canada’s grasslands are a vital and endangered resource. This ecosystem is home to significant biodiversity, and is often used as grazing land for beef production. The tricky balancing act is our ability to protect ecosystem biodiversity and optimize beef production. Carlyle (2019) identified the pros and cons of beef production together with  the production of ecosystem goods and services Clearly, beef cattle can be a positive influence on biodiversity protection in grasslands, and well-managed cattle grazing can contribute to grasslands’ sustainability.

The question of whether we are doing the best we can remains open. Genomics can help achieve the optimal balance between animals (bovine and wild) and plants on native and tame pastures. By understanding animal genetics linked to their grazing behaviour and the genetics of plant material in the pastures, science can identify the best animals for particular properties, which could be public or private lands.

The time is opportune, with many applications of new forms of precision agriculture (drones, wearable sensors) and the availability of analytical methods using big data and artificial intelligence or machine learning. This provides the opportunity to enhance beef production and the production of ecosystem goods and services. Investor pressures provide the economic need for more research and for adoption of precision management of our sensitive grasslands. Understanding how to manage cattle and grasslands optimally is an opportunity to get in front of consumer pressure to have a verified ‘sustainable’ beef product as part of their food choices.

Sustainability starts in the microbiome Part 2: Cows and food-waste streams

Cattle don’t just eat grasses.  They can also digest 99% of fruit and vegetables—even bread. Producers have been feeding cull potatoes and peels to cows for years, so the idea of feeding food waste to beef cows is nothing new.

“Ideally, humans should consume the food,” says Tim McAllister, Principal Research Scientist for Agriculture and Agri-Food Canada in Lethbridge, Alberta, “but for now, food waste represents a continuous stream of potential feed.”

Spoilage isn’t an issue if food waste is preserved as silage. If properly ensiled, the quality of the food could be conserved for years. The real issue is the excessive packaging that gets discarded along with the waste. McAllister envisions a system in which food waste from grocery stores or restaurants is separated from packaging and delivered to farms. Sounds simple? Not so fast…. Some regulatory and transportation issues have to be fixed, first.

Let’s take a box of blueberries as an example. They’re shipped from Nova Scotia to wherever they are going in plastic. If they don’t get sold at the retailer, they go to a landfill or composting facility. At that point, they are designated as hazardous waste, making it illegal to remove them from the disposal site. To complicate things even more, you can’t legally feed anything to cows that isn’t listed in the Feeds Act without a special certificate. You guessed it…Blueberries aren’t in the Act.

“Sadly, that’s a true story about the blueberries,” says McAllister. “I found them when I was visiting a commercial composting facility. Perfect condition. Couldn’t take them home.”

The issue here is consumer expectations. If grocery stores didn’t restock their shelves, those shelves would be bare within 2-3 days. That’s how fast the turnover is. Any remaining produce will look less appealing by then, especially if it has to compete with newly-stocked produce. What do consumers pick? The new produce. Two misconceptions are happening. Visually, we don’t like “wilted lettuce,” even though it’s perfectly safe to eat and poses no health risk. And we think poorly of stores that keep it on the shelves so they remove it to protect their image.

Then there are liability issues. Once the Canadian Food Inspection Agency has approved a feedstuff, the federal government could be liable if people or animals get sick from it. For example, the CFIA ensures that some waste products from the processing of cattle do not enter the feed or food chain. Ensuring the integrity of this system is important for food safety and for complying with export regulations.

“So you can see why the system evolved to how it is now, and why it is not easy to change,” says McAllister. “But we have to start somewhere to reduce and derive more value from these food waste streams. There’s not much point beating up on beef production over methane emissions while so much food ends up in the garbage. We need to use the leakage as feed if we’re going to take full advantage of the role beef cattle can play in a circular economy.”

NOTE FROM GENTEC CEO, GRAHAM PLASTOW: “The Brits are a bit ahead of Canada on this issue. One of the companies I worked with, SugaRich, has been taking wrongly-packaged food, like chocolate bars, etc., and turning it into ingredients for animal feed for many years. SugaRich is adamant that Food for Animal Feed should not be classified as waste.”

Sustainability starts in the microbiome

Part 1: Cows and climate change
When Canada’s beef industry says its priority objective is to be sustainable, what does that mean, specifically?

The answer isn’t a simple as you might think. A comprehensive definition should include animal health, eating quality, the impact of production on the environment and the ecosystem services returned to Canadians, stewardship of the land, and the circular economy that includes the ability of cattle to use byproducts as feed and the production of energy from manure.

“The short answer,” says Tim McAllister, Principal Research Scientist for Agriculture and Agri-Food Canada in Lethbridge, Alberta, “is that we have to take a systems approach to sustainability.”

McAllister’s research focuses on cow microbiology, nutrition and biology, and how their influence on sustainability depends on their interaction with the rest of the cow. This isn’t simple, either. Interaction could refer to the microbiome of the respiratory tract and the cow’s likelihood of developing pneumonia that needs treatment with antibiotics. Or it could be the microbiome of the digestive tract and the cow’s resulting feed efficiency and methane production, the likelihood of digestive disturbances, or the influence the microbiome has on establishing human pathogens within the cow’s digestive tract, which can even influence the amount of methane produced from biodigested manure.

McAllister is collaborating with Gentec researcher Leluo Guan on the two-way communication between these microbiomes and the cow.

“The microbiome is heavily controlled by the immune system and the metabolic end products that the microbes produce. Since proteins and vitamins play a key role in immune response, we’re looking at the nutritional elements of the cow’s diet, especially since, in feedlots, cows are fed byproduct feed, such as distillers’ grains, that would be a liability to the ethanol industry without a market for them as feed.”

The microbiome allows cattle to ferment forages, which results in methane as a byproduct. McAllister points out that the origin of this methane is different than that of methane that is used to heat our homes. Carbon in cow methane comes from the forages it has just eaten, and it has just been captured by the plant through photosynthesis. In most cases, this carbon was carbon dioxide in the atmosphere less than a year before capture.

“So carbon in methane from cattle originates from short-term carbon in the atmosphere as CO2, the season before the animal grazed the plant” he says. “That’s very different from the carbon from fossil fuels. That methane was deposited and stored millions of years ago. Most of it is ancient carbon.”

McAllister points out that cattle and other ruminants were producing methane long before the Industrial Revolution without any significant consequence for climate change. There were 30-60 million buffalo roaming North America’s Great Plains—all far less efficient as they consumed only forages, unlike the forage/grain system used to produce cattle today. Therefore, climate change is really a consequence of the release of ancient—not short term—carbon into the atmosphere. While the methane molecules from these two sources are the same, their origin is vastly different.

Another component is the native and tame grasslands that are managed by Canada’s cow-calf producers. These lands store vast amounts of carbon that would be released into the atmosphere if they were to be cultivated. Using these lands as pasture preserves the land and its biodiversity, with the added benefit of carbon storage.

“Consumers need to understand the nuances associated with beef production in Canada and the roll beef cows play in nutrient recycling,” says McAllister.

Indeed, one of the major issues of the day is food waste. The world actually produces more than enough food for its population but loses over half through poor storage and distribution before it even reaches consumers. In Canada, 30-50% of some foods can end up in composting facilities or landfills—this is after the fuel, fertilizer and transportation energy has been spent to produce it. Once it enters a landfill, there is a good chance it will produce methane during decomposition.

“If we could line up supply channels, food waste doesn’t have to be a net liability,” says McAllister. “Unlike poultry and pigs, which have defined nutritional requirements and a narrow profile for adjusting it, cows live in an outdoor environment and have to deal with a range of forages and feed types. The rumen microbiome is capable of breaking down many different types of toxins, making cattle the logical end user of food waste streams.”

On that note, we’re going to leave you with that cliff-hanger. Next month’s article will continue the story on McAllister’s vision for cutting food waste.

Innovation Collage from China

Gentec’s former Director of Knowledge Translation, Dawn Trautman, spent 12 days in China at the beginning of May, marvelling at its contradictions and potential with her MBA program group.

She walked us through her photo album and shared her insights on this global powerhouse.

Hanergy
Hanergy is one of the largest solar manufacturers in the world, specializing in thin film and thin-film solar cell research. It has R&D centres in Beijing, Sichuan, Silicon Valley of the US, and Uppsala, Sweden.

“The technology is getting better,” says Dawn. “Hanergy is proud of the 17-18% efficiency of its solar panel glass windows. The opacity is gone. Now you just see a bit of a wave.”

“The demonstration products in the showrooms got more and more impressive as we progressed. Anything you can think of to put a solar panel on—they’ve done it. Umbrellas… Coffee shop tables… Sidewalks… Drones… Anything. You didn’t know you needed this power until you have it there. The bike has a solar panel in the basket that powers the payment system for a bike-share program. Panels on the back of a jacket power heating elements. It’s all ingenious.”


Hanergy has applied for almost 1,000 patents in new energy, of which 60% are invention patents (including core patents from the acquired overseas companies). It has also been the chief developer or involved in the development of over 10 national and industry standards on solar energy.

“Very impressive solar cars,” says Dawn. “Flashy—but not available for purchase yet.”

Belt and Road Initiative

The former home of Dr. Li Ruohong, President of China World Peace Foundation (CWPF) and Beijing International Peace Culture Foundation (BJIPCF) converted into a ‘museum’ and hosting residence for delegations. Dr. Ruohong is involved in the Belt and Road Initiative; an ambitious endeavour for linking China with neighbouring and distant regions, physically and with policy and trade coordination. It will put China at the centre of international trade with the end result to ‘open up the world’ to globalization and international cooperation.

In 2018, Gentec CEO Graham Plastow attended a conference on the Belt and Road Initiative on behalf of UAlberta. Gentec’s linkages with the China Agricultural University, Zheijiang University, Huazhong Agricultural University and others as well as exchanges of personnel have contributed to vibrant relationships for the benefit of science and the two countries. Notably, former Gentec professor Zhiquan Wang is now helping the Guangxi Yangxiang Co Ltd develop its pig genetics program, including using new technologies such as facial recognition.

As well, UAlberta itself has facilitated linkages with China, notably when Dr. Lap-Chee Tsui, President and Vice-chancellor of the University of Hong Kong, visited the University in March 2015 for roundtable event called International Collaborations with Scientists and Educators in China. Another more recent event was the latest Canada China meeting regarding Science, Technology and Innovation (STI) Collaboration Projects through Global Affairs Canada, which may include a project on beef with Gentec.

“What struck me was that there’s not much influence from the Americas,” continues Dawn. “We have this centralized view of North America but on the global scale, it’s a bit worrying that we seem to be an afterthought. We really need to address how Canada can play a bigger role, especially since we’re Pacific neighbours. Our professor said that another possibility of partnerships with China would be to gain access or facilitate partnerships to other countries.”

Hangzhou. Mall near Alibaba HQ

Panels like this one record the gender and age of shoppers, how many parking spots are free, etc. so shoppers can decide when to go to avoid the crowds. It also directs heating and cooling from the recorded hotspots.

“This was a bit spooky,” says Dawn. “We couldn’t figure out how they know the age and gender! Maybe through the messaging-social media-mobile payment app, WeChat. And there are cameras everywhere, so as a tourist you feel really safe.”

Shanghai Zhangjiang HiTech Park
This park acts as an incubator for tech companies as well as an accelerator and free-trade zone. Companies there make a video game for hand-and-arm rehab that is being sold in Germany, and other health-related products.

Shanghai Starbucks Reserve Roastery

At 30,000 square feet, this was the largest in the world until a one opened in Tokyo. At $6-7/mug, Starbucks is expensive in China, more of a status symbol.

Contrast and contradiction

“You see what I mean about contradictions?” asks Dawn, speaking of these images. “Shanghai is like any international city. There’s even a French concession area. It didn’t always feel like China, whereas Beijing and the other cities did. China will host the Winter Olympics in 2022 so I think they will reuse the Bird’s Nest.”

“We should be more aware of their development,” she says. “It felt like the future is here, and we’re playing catch up. Obviously, there are still problems, like pollution, but there are trees and tree farms everywhere so they are concerned with the environment. Is it a distraction? Some of the more interesting things in societies are their contradictions. China is both modern and respectful of its traditions, and it seemed there was often structure and chaos at the same time.”

Is there a “beef” with Canada’s new Food Guide?

The 2019 update of Canada’s Food Guide has been out for about a month. In that time, it has been both praised as better reflecting today’s lifestyles and sustainability issues, and reviled as insufficiently reflecting Canada’s demographic diversity.

“Certainly, the new Food Guide has some great concepts,” says Tom Lynch-Staunton, Alberta Beef Producers’ Government Relations and Policy Manager. “The proportions of fruit and veg versus protein and grains… absolutely, that’s appropriate.”

Where the livestock sector differs is that the Guide over-emphasizes plant-based protein—on a plate that’s already three-quarters full of plant-based items.

“We think that could be misguided,” says Tom. “Plant proteins don’t have the same nutritional profile as animal protein. Meat contains all the essential amino acids; plants don’t. Vitamin B12 only comes from animal protein, unless supplemented in other foods. And iron from red meat is much more bioavailable than plant-based iron.”

The beef sector is concerned that animal protein and plant protein are made to look equal. However, certain demographics (children, seniors, pregnant women, athletes, etc.) need extra nutrients that they may be substituting out with plant protein without realizing that they may be inviting deficiencies. Milk is an obvious example.

“If you give your children soy milk instead of cow’s milk, thinking it is the same, they probably won’t grow the same way,” says Tom. “You have to compare the nutrient profile! That’s the missing piece.”

Tom would have preferred the Guide to recognize that milk, meat and eggs are highly nutritious but that if people don’t want to eat them… here (the missing piece, perhaps advice from a dietician) is how to get equivalent nutrition that meets their needs from alternatives. You can’t just tell people to replace meat with lentils and be done with it.”

Alberta Beef Producers isn’t really worried that Canadians will switch to tofu by the thousands and drive it out of business. True, Canadians are eating less beef, but the developing world is increasing its consumption as the quality of life in those countries improves.

Instead, it is positioning beef consumption as a complement to other foods in smaller amounts. A 180-degree shift from the more familiar steak. That might mean adding a few slices of beef to a salad high in Vitamin C to better absorb the iron from the beef, which can increase the bioavailability of the iron from the spinach as well. Alberta Beef Producers is also positioning beef as a nutrient-dense food to those demographics who need the extra nutrients, and trying to reconnect consumers back to where beef comes from… how it’s grown and the environmental benefits of raising livestock, especially on land that is not suitable to grow crops. There are lots of misconceptions out there.

“Of course, we want people to eat beef and drink milk,” says Tom. “There’s an economic value that infers bias. And, of course, we wanted to be consulted on the Guide but Health Canada was trying to keep bias out of the mix. Bottom line? That’s irrelevant. What IS relevant is how the Guide improves the health of Canadians. So the question is: how much (nutritious) meat can you eat to complement other items on the plate. That’s the balance we’d like to see.”

Food Risks and GM food

Ellen Goddard

Recently, (November 2018), the PEW Research Centre produced a report (Public Perspectives on Food Risks), which identified gender differences in public perspectives. We were curious about that aspect of our own research so we went back to a national survey[1] conducted in January 2017 and had a look. In fact, there are statistically significant differences in the public perceptions of a number of food risks in Canada that are very similar to the ones identified by the PEW Research Centre. Here are some examples of different perceived food risks by sex in Canada.

We asked consumers: “How do you rate the health risks for consumers of regular consumption of (1) foods with pesticides or other chemical residues; and (2) Genetically Modified Food? (see headers in the following charts)”

 

The differences in responses between males and females is statistically different in each case. This is particularly interesting given that females still do predominantly more household food shopping than males.

The PEW research showed that people who were more knowledgeable about science were less likely to oppose GM foods. That, too, was something we investigated in our 2017 national survey of 1,800 Canadians. In that survey, we asked people to self-assess their knowledge of science and technology on a scale from 1 (know very little) to 10 (know a lot). The frequency of responses at each level of the scale and the average perceived human-health risk of GM foods for each group of respondents are shown in the following figure. There is a clear negative relationship between self-assessed science and technology knowledge and perceived risk of GM foods.

Given that the second rationale for concern about GM foods often concerns unexpected environmental externalities, we also looked at self-assessed knowledge of environmental problems (again, on a 1 to 10 scale) and perceived GM-food risks by groups.

Although the trend is somewhat less clear than for knowledge of science and technology, there is clearly a negative trend for the higher self-assessed knowledge of environmental problem scores from 6 through 10. So, as with the PEW research, higher knowledge of science and of the environment (which do not appear to be perfectly correlated) suggests more acceptance of GM foods, indicating perhaps a better understanding of inherent trade-offs with higher knowledge.

A number of other studies have suggested that there might be issues of fairness in markets and sectors that influence people’s assessments of the risks of GM foods (see here and here). In our research, we assessed a number of different aspects of fairness including the fairness of producer and consumer prices. To illustrate the concept of fairness and perceptions of GM food risks to human health, below are the answers to: ‘When it comes to new technologies in agriculture, it is fair to spend my tax dollars on developing these technologies. ’ We used a scale of 1 (strongly disagree) to 5 (strongly agree).

Again, there is a clear downward trend in the perception of GM food risks to human health with stronger agreement that taxes should be spent on the development of these new technologies in agriculture.

Why is any of this important in the continuing debate on GM foods, particularly in the context of moving forward with new genetic technologies, such as gene editing and gene drives? First of all, some of the same arguments that discouraged the adoption of GM technologies are beginning to rise in the context of the newer genetic technologies. Second, perhaps it is becoming much clearer what the role of science education (particularly from elementary school through high school) may be in encouraging understanding of the trade-offs between acceptance of newer genetic technologies and serious global food production and climate change issues.

Interest in science and technology is likely developed at an early age and, without that interest and follow-up throughout their lives, results suggest that people are more likely to oppose the use of genetic technologies in the food space (although they likely all own and use smart phones). Food is different, and raises a host of different concerns than do some other technologies in our daily lives. As demonstrated in another of our studies, cultivating an interest in science and technology across the population may reduce the perceptions of the human-health risks of GM foods (and likely of the outcomes of other genetic technology approaches).

________________________________________________

[1] This survey was conducted in order to better understand the public’s interests in science, technology and animal agriculture as well as willingness to purchase different meat products.