At the Grill with William Torres: Meat labelling

This month’s At The Grill feature by William Torres (former Research Manager at Cattleland Feedyards and popular presenter at Gentec conferences) focuses on labelling meat that has been raised different ways.


Once upon a time, when I lived in East Texas, I had to learn to defend my religion. I mean, if there’s a Bible belt in the USA, Texarkana Texas is the buckle portion.

You might ask, what does religion have to do with cattle? They’re one in the same. It’s a way of life! If you don’t know how to defend your way of life, how can you keep it going?

I don’t mean get into a fist fight with vegans. I want to be able to explain the important details to those who want to learn about beef. As I travel the world for pleasure and business, I always get asked what I do for a living, especially when I’m in airplanes or wearing a cowboy hat, lol. So here’s my elevator pitch to welcome people into Team Beef.

The first thing is that all meat is 100% antibiotic free. It’s the law! Just because an animal was sick doesn’t mean that we will let it suffer. Regardless of marketing program, breed, environment, etc., some cattle have natural disease immunities, and others will be susceptible. Cattle are mammals, and just like you and I, some get sick and need help. However, to be harvested, they need to meet specific standards that require withdrawal dates from their last (if any) dose of antibiotic. Ergo, all cattle meat is antibiotic free. I repeat: it’s the law!

Second, grass-fed doesn’t mean they lived their lives chasing puppy dogs and rainbows. Chances are, they were still finished in a feedlot, just with a more foraged-focused diet. Personally, when I want 100% grass-raised protein, I hunt it. I don’t like grass fed/finished beef. I’m a big fan of grain-fed beef. Those little specs of marbling (or as I like to call them, “little bite sizes of heaven”) is what really gives you the flavour that creates core memories.

Yes, I know you know a guy who raises 100% grass-fed beef but I’m willing to bet the herd is less than 15 head, and they’re not feeding the world. And that’s also why you always have to smother that meat in some kind of gravy or sauce.

Organic. This is the one label that almost got me banned from the farmer’s market. If someone has a small operation and they do all the work themselves, including hugging their cattle daily, it doesn’t automatically grant them an “organic” label. This is probably one of the most difficult meat labels to get in Canada. The feed must be certified organic, the bedding has to be certified organic, the water source has to be free from run-off from non-organic fields, etc., etc. And all these certifications need to be in place for at least 3 years before an animal born on the operation can be labelled as such. I mean, you really must be committed to losing an additional 30-50% of your profits for 3-5 years just to get that label. But at least you can charge it all back to the consumer, right?

When I managed the feedlot and we gave tours, I always made a point to explain the differences of the diets for our conventional cattle and those on a natural program. In other words, none! The difference was the enrollment process of the cattle from birth, and the mounds of paperwork required. How did we handle the inefficiencies of such programs that added costs? We passed them on to the consumer.

Lastly, no, we don’t genetically modify any animals destined for slaughter. We can only select genetics that best fit our environment, feed availability and purpose.

At the Grill with William Torres: Cattleman or hobbyist?

This month’s At The Grill feature by William Torres (former Research Manager at Cattleland Feedyards and popular presenter at Gentec conferences) focuses on how to translate packing plant information into genetic change.


It’s been a long ~16 months of struggles, feeding and keeping your cattle alive. Now, your cattle are finally going to the slaughterhouse. Withing 72 hours or so, they will have been harvested, weighed, chilled, weighed again, and graded including yield. All of this information will come to you in a very complex report that includes carcass weights, grades, rib eye areas, payout and discounts.

Most of us pay attention first to the payout, followed by discounts, and then averages. But that’s the top of the iceberg. How do you translate packing plant information into genetic change? Here are some simple steps to help you out.

First, remember that bull or two (or 20) you bought in the spring a few years ago? Their theoretical genetic outcome (along with every other bull in your battery), is now being measured in real life. Let’s hope you kept up with your sires’ and dams’ offspring’s records.

Second, ask ahead of time that the carcass information be matched to each animal’s Canadian Cattle Identification Agency (CCIA) Electronic Identification (EID) as this may not be a standard procedure at your plant. Commonly, all the information is matched to a carcass ID… but NOT to your EID.

Third, match the EIDs to your birth records. If you haven’t already, start a database that allows you to keep track of each offspring’s information, including harvest information. Ultimately, this is what allows you to track the outcome of your genetic decisions. Remember those Expected Progeny Differences (EPDs) we talked about in February[SD1] ?

Data is everything, and as John Doerr said, you need to Measure what Matters! How you manage your data is what separates the cattleman from the hobbyist. This is HUGE, especially if you don’t retain ownership of your cattle. That’s why it’s also important to have a great relationship with your feedlot.

What decisions you make are unique to your outfit. For example, if you’re getting too many overweight discounts, it may not be a genetic influence but merely a management aspect that needs to be addressed. Maybe you already knew that you held on to your cattle too long, and there was going to be some adjustment to the schedule.

However, if you’re meeting or exceeding your contract expectations i.e.; minimum 70% AAA and you are consistently delivering 90+, maybe it’s time to renegotiate your grid. On the other hand, underdelivering will always cost you more; remember, you never get paid more for doing a great job but you’ll be penalized for not doing a good one.

Bottom line comes down to being realistic vs. what you were expecting. If you measure against true goals, you’ll be able to make proper decisions. I don’t have to remind ya’ll—but I will—that our industry is not a sprint race. Genetic change moves slowly like a never-ending marathon. Therefore, you need to make genetic decisions that will impact your operation for at least the next 10 years.

For more information, contact John Basarab [SD2] here at Gentec for help.

 

 

Coming to market soon! Um… is that too soon? or not soon enough?

I’m not enthralled at the prospect of eating a soy-based patty or crumble that has been processed to be passed off as ‘meat’. I’m not going to consume cell-cultured ‘meat’ grown in a petri dish willingly. But I can’t wait to sink my teeth into a juicy chunk of Pinkglow® Pineapple that’s been genetically modified to stay pink and sweet. Pinkglow® Pineapple is already available in some US markets, and is an option for consumers who want to try it. Another choice that will be available within the next two years is gene-edited livestock products, including beef.

Oh dear… I’ve used the phrases genetically-modified and gene-edited. Very unpopular, unsexy and frighteningly science-y. Let’s get them out of the way.

Genetic selection has been practised in agronomy for centuries. Robert Bakewell is credited for observing that selective breeding in livestock improves the next generation. He founded the first breed associations to record pedigree and performance information. The objective was a centralized repository of data with which selection and breeding decisions could be made. That objective remains in place today.

Genetic selection was applied to crop breeding with tremendous results long before Bakewell. My favourite illustration of the power of genetic selection is the fact that modern cultivars of broccoli, cauliflower, cabbage, kale, Brussels sprouts, collard greens, and kohlrabi all originate from the same Brassica oleracea plant species. Each modern cultivar was selected based on crown size (broccoli and cauliflower), leafiness (kale, collard greens) or enlarged heads of tightly-rolled leaves (cabbage, Brussels sprouts). This is the power of genetic selection; provided you have a goal and some staying power—because it takes more than one generation to get there.

GENETIC MODIFICATION

One way to “get there” sooner is to use genomics technology. In livestock, the rate of genetic improvement can be maximized by using genomically-enhanced EPDs (GE-EPDs). A different application is to modify the genetic material of organisms to generate GMOs. Two techniques are used to achieve these new, genetically-modified variants, both of which insert genetic material into an organism using a gene particle gun or a bacterial host.

The new genetic material can be from the “original” species (changing a naturally-existing gene), it can be a gene from the same or similar species (such as AquaBounty Atlantic salmon, which was created by inserting genetic material from Pacific salmon) or from a different organism altogether (such as genetic material from the papaya ringspot virus (PRSV) used to create a papaya variant that is resistant to PRSV). Genetic modification technology has been used since the 1990s to develop varieties of tomatoes, squash, soybeans, cotton, corn, papayas, potatoes, canola, beets, alfalfa, apples, grapes—the list goes on. This technology has been used to create variants (primarily in crops) that are disease resistant, drought resistant and environmentally, economically, and ethically more sustainable. The possible advantages of genetic improvement using genomic modification technology is incredible.

One of the limitations of the technology is its precision. Peppering cells using a gene gun or using bacteria carrying the novel DNA as a kind of “Trojan horse”, doesn’t allow you to dictate where new genetic material (and sometimes what genetic material) gets inserted. Scientist have been working on a more precise technology for decades.

GENE EDITING

In 2020, Drs. Emmanuelle Charpentier and Jennifer Doudna were awarded a Nobel prize for pioneering a revolutionary technology that improves the precision with which genetic edits can be made. Although new genetic material can be added to organisms using this technology, its true advantage comes from being able to ‘fix’ (change) existing genes. The technology, called CRISPR, has been used to create therapies for cancer, Alzheimer’s, HIV, muscular dystrophy and inherited blindness.

In agriculture, CRISPR is being used to modify crops to generate naturally-decaffeinated coffee; eggs that don’t challenge people who are allergic to egg protein; grape varieties that can grow in drought conditions, milk that is naturally lactose-free; tomatoes that are healthier or are naturally spicy; polled (hornless) Holstein cattle; tuberculosis-resistant cattle; cattle that are more heat tolerant; and pigs that are resistant to PRRS virus. Again, the list of possibilities is endless. And the development and regulatory approvals for commercialization and consumption are moving quickly, particularly in North America.

So in view of supply chain issues, labour shortages, food shortages, war and climate change… Are these products coming to market too soon or not soon enough?

Kajal Devani

Director of Science and Technology
Canadian Angus Association

 

 

 

 

Next-gen talk to next-gen ranchers

Even the title suggests this wasn’t going to be easy. “Introducing genomics technologies to 4H participants to promote genetic tools in the Alberta beef industry.” And yet, this is the project UAlberta Capstone students Jacqui Gironella, Diego Martinez Mayorga, Jayden Pidsadowski, Leah Trenson and Min Chieh (Ruby) Hsu chose to present—to the surprise of Professor Frank Robinson, who recognized the significant challenge and was a tad apprehensive about their success.

It wasn’t so much the first part that was hard: testing about 160 steers belonging to the 4Hers (Gentec did that part, as well as the mentoring). It was getting the information to look understandable, real, relevant—and interesting—in front of the 4Hers and their producer parents.

“These are super-complex topics, and it was hard not to use jargon,” says Diego, who comes from a beef/dairy background in Ecuador. “That was a project in itself. So we made factsheets for each steer.”

The incentive for working with 4Hers is that they are already from a farming background, sometimes several generations back. The team figured that introducing genomics to the farm through them in a simple, non-invasive way was the recipe for success since they are likely to be the future of beef operations in Alberta. The students found that the main objections came from the adult producers who didn’t know what genomics was and what benefits it could offer. Wanting to cover all bases, however, the team also explained in their presentation that genomics is just one piece of the puzzle (albeit a good one) but producers can’t ignore nutrition, shelter, good husbandry in general. Genomics works best in combination with all a producer’s accumulated experience conducting visual assessmentson conformation, feet, udder and temperament. If you can see for yourself that the animal doesn’t measure up—you don’t need genomics. Genomics adds value by facilitating the ranking of the animals you otherwise would consider acceptable.

“Habits are difficult to break,” says Jacqui, who, unlike Diego, had never seen a large animal until a few years ago. “We thought this was a neat way of approaching the hesitancy towards testing and genetic selection for producers who aren’t using it yet. They’re more likely to trust information from their kid or grandkid—and we noticed that lots of generations watched our presentation.”


Enter Paul Franz, son/grandson to ranchers, and now himself a rancher in Grimshaw, Alberta, since 1996 trying to build an F3 and F4 herd. He became involved in the project as the local 4H leader.

“I hope the kids learn about genetic diversity in cows and that they can create crossbreeds to get the ideal animal for their situation, whether it’s a feedlot, backgrounding or a cow-calf operation,” he says. “They’ll get a premium for the calf in the local market.”

Paul is already a believer in genetics. As his knowledge grew through his role on the provincial Beef Advisory Committee and associated Carcass Committee, genetics was in the back of his mind. “Just to know where my cows are from, genetically, and their hybrid vigour.”

This project was a happy coincidence for him. He used the opportunity to get his whole herd tested.

“If you want to move forward in a crossbred program, you’d want to know what your herd is doing,” says Paul. “So research the traits to get more out of your bull. In 3-5 years, those traits will be on your replacement heifer side.”


Back in the lab, Diego and Jacqui are reeling at the difference between the cloistered halls of academia and the hands-on ranch operation.

“In the classroom, we have great numbers and no confusing variables,” says Diego. “We focus on genetics but in the real world, every producer has their own management program so cows with the same potential may end up quite different. I hope that came through in the presentation.”

“Clint was really helpful on this,” says Jacqui. “He guided us on what producers want and don’t want, and made sure we explained everything thoroughly. His perspective from a marketing standpoint was very different and valuable.”

For Diego and Jacqui, the project turned out even more fruitful. Both students have summer jobs at Gentec.

“I’ll be working with Graham Plastow, researching heat stress in cattle using infrared thermography,” says Jacqui. “And with Ed Bork at the Kinsella Ranch, analyzing what the different herds of cattle are eating at pasture there.”

“I’ll be doing extension, attending conferences, manning booths, preparing presentations and writing some research overviews,” says Diego. “It’ll be nice to stay inside for the summer for once. I’d like to stay in ag genetics if possible as a genetic consultant… helping producers select for what they need. Wouldn’t that be an awesome job to have?”

At the Grill with William Torres: Ride for the brand

This month’s At The Grill feature by William Torres (former Research Manager at Cattleland Feedyards and popular presenter at Gentec conferences) focuses on how loyalty to a genetics brand can help producers get ahead thanks to buy-back programs.


Did you see the Yellowstone episode where Teeter (Jen Landon) questioned RIP Wheeler (Cole Hauser) and John Dutton (Kevin Costner) after being canned for fighting in the bunkhouse?

“So all that ‘this is my home forever is just talk’? F**king scarred for life, it don’t mean nothing? (As she shows her “Y” brand).”

What is loyalty? Do cowboys still ride for the brand? Are you loyal to a genetics brand?

Every producer I’ve ever talked to wants to do two things; survive in this industry and make a living at it. As times are changing, we are getting more and more pressure to do more with less, be sustainable, reduce greenhouse gas emissions, etc. And Lord knows, we must keep the country blacktops free of manure or the weekend cyclist will complain.

Many organizations out there (I won’t name any) claim to be fighting for you—but are YOU fighting for YOU? What are YOU doing to stay in the fight?

One of the many ways you can do all the above is by managing your genetic selection and genetic purchases. I surely hope none of us are still buying sires the way our grandpas did it. So much data are available in one single bull sale catalog nowadays that the only thing left to do would be to interview the bull to make sure he fits with your ranch culture and values. Oh… And make sure he has teeth.

If you’re scared to invest in your herd’s genetic benefit because you think it’s pricey, why don’t you align yourself with a great outfit that’s willing to stand behind its genetic brand?

Take, for instance, the Nelson Family Ranches in Stirling, AB. They put their money where their mouth is. They have a great buy-back program and purchase the calves you get from their sires. How much more can an outfit stand behind its brand!? The Nelson Family Ranches is “a sixth-generation family farm that values hard work, honesty, and bringing top quality, innovative products to you.”

I’ll give you another example. If you’re ever in Calgary and want to go for a great steak, visit Modern Steak. It is (to my knowledge) the only steak house that has partnered with local ranch Benchmark Angus from Warner, AB. to own their own bull. Now that’s what I call commitment and a continual supply of high-quality meat. Benchmark Angus is owned and operated by the Munton Family, a fourth-generation outfit that “has been pursuing Angus beef genetics for the proven tenderness and far superior taste that only premium Benchmark Angus cattle provide.” Their buy-back program from sired cattle supplies their own plant for everyday meat sales.

Bottom line is, focus on the genetics that will make a sustainable impact on your herd allowing YOU to not just survive, but make sure you leave a legacy behind for the next generations. There’s an old saying that goes something like, “If someone tells you who they are, listen. If someone shows you who they are, believe them”. A buy-back guarantee shows you who they are and that they stand behind their brand. These are just two examples.

For more information, contact John Basarab here at Gentec for help.

 

 

Putting innovation in producers’ hands

RDAR’s (Results-Driven Agriculture Research) mandate is to fund producer-led results-driven agriculture research, with a laser-like focus on projects that have an imminent benefit to Alberta’s agricultural sector.

“RDAR invests in ag research projects,” confirms Clinton Dobson, RDAR’s Research Director. “Within these projects, we want to see transdisciplinary teams working together in producer/public/private partnerships to accelerate the adoption of technologies and products on farms.”

RDAR’s mandate is guided by a five-year Strategic Framework  designed to anticipate and respond to emerging trends and market demands. This strategy provides the scope to react quickly to change and respond to emerging issues, for example, drought and heat stress, and to the growing use of technology and tools to drive production and profits on the smart, connected farm.

To target the dissemination of innovation, RDAR relies on Extension Services to ensure producers can hit the road running with new knowledge. To be sure that Extension is tailored to the needs of the 21st century producer, RDAR formed a cross-industry Extension Task Force. Following a comprehensive review of options, and completing surveys and consultations with stakeholders, the Task Force is expected to deliver its recommendations in summer 2022.

RDAR also supports extension in the field, demonstrating how new technologies and practices, when linked to ‘how to adopt’ information and training, enable producers to adopt innovation into their operations. At the most granular level, RDAR even brokers connections between researchers, producers and industry to power up the transformation.

The livestock sector is an area of emphasis for RDAR, as exemplified by the linkages between Gentec and RDAR: RDAR’s Board comprises former Gentec directors Dr. David Chalack and Dr. Fred Lozeman, current director Dr. Stan Blade and industry collaborator JP Brouwer. On RDAR’s research team is Gentec alumnus Dr. Brian Karisa.

“Genomics IS happening!” says Clinton, “Although RDAR is new (we came into existence in July 2020), we have invested in two significant projects with Gentec and the Canadian Beef Improvement Network (CBIN) to advance knowledge mobilization. Together, we can rapidly advance genetic literacy among beef producers so they can achieve the economic potential of genomics on their farm or ranch.”

RDAR’s investments include $1.4 million in Gentec projects (see here  and here  for examples) and $640,000 in CBIN . The standout factor for both organizations is that they can deliver transdisciplinary producer-public-private partnerships to overcome the challenges to the uptake of genomics in the beef sector. Gentec also works with CBIN to determine where Gentec can add value to CBIN’s strategic outcomes and put genetics-based breeding tools into the hands of producers.

“Investing in the collaboration between Gentec, CBIN, the beef breed associations and CBBC was a shoo-in for RDAR,” says Clinton. “It will build greater synergies, and increase the competitiveness and sustainability of producers. We’re confident about the broad adoption of beef-breeding genetics, and we can draw parallels to other sectors’ successes, for example, the dairy industry. Although adoption in beef lags behind dairy, that just means we have great opportunities to make big strides in driving genetic improvement on the ranch.”

 

 

 

 

 University of Alberta – Post-doctoral Fellow (PDF) Announcement (Beef Quantitative Genetics and Genomics)

A post-doctoral fellow (PDF) position is available at Livestock Gentec, the Department of Agricultural, Food and Nutritional Science, University of Alberta, working with a team of researchers to develop and improve genomic prediction tools on beef cattle growth, feed efficiency, carcass merit, and fertility traits and to implement genomic tools to enhance beef cattle production efficiency and quality. Researchers at Livestock Gentec have consolidated large beef cattle data sets for phenotype (n>13,000), genotype (50K, GGP100K, or HD on n>13,000), transcriptome and metabolites on a subset of the cattle, which provides excellent opportunities to elucidate genetic control of economically relevant traits and to develop genomic tools that incorporate multi-layers of “omics” data.

Major research responsibilities include: (1) Work with the existing team (principal investigators, co-investigators, research associates, PDF, research technicians, graduate students from multiple institutions including Agriculture and Agri-Food Canada and University of Alberta) to consolidate additional beef cattle multi-layer “omics” data from on-going research projects and to assist with the development and maintenance of large databases;  (2) Adapt and implement a range of methodologies for genetic/genomic analyses of beef cattle data relevant to multiple traits (growth, feed efficiency, carcass merit, and fertility traits) and multiple “omics” data; (3) Refine genetic/genomic methods to improve genomic prediction accuracy for these traits; (4)  Provide genomic profiles (genomic breed composition, molecular breeding values, and multiple trait selection indexes) for beef cattle submitted by beef producers partnering in demonstration projects; (5) Assist with mentoring of graduate students and teaching of genetic/genomic courses; (6) Conduct appropriate outreach and technology transfer in concert with other members of the research team. 

Qualifications: Applicants must have a PhD degree from a recognized university in the area of Quantitative Genetics and/or Statistical Genomics or Bioinformatics within 5 years. Familiarity with Beef Cattle Production Systems is an asset. Candidates must have a good understanding of the theoretical and computational principles related to the analyses of quantitative and molecular data for the purpose of genetic analyses and genomic prediction. Candidates must also demonstrate skills and work experience in computer programming, preferably in C, C++, ASreml, SAS, R or Perl, to develop customized programs for genetic analyses and genomic prediction. The ability to effectively communicate and collaborate with colleagues in research is essential. Previous experience working with cattle is desirable. Knowledge and experience working with large databases are a definite asset.

Applicants: For more information, or to apply, please send a cover letter, statement of research interests, updated CV, and the names of references, to either Dr. Changxi Li, changxi.li@ualberta.ca, or Dr. Graham Plastow, plastow@ualberta.ca. This is a two-year position with a great opportunity of renewal. The target start date is September 1, 2022.

Are your bulls earning their keep?

There’s the traditional way of doing things, and there’s the new (usually more effective/informative) way. Dr. Waylon Wise of Cow/Calf Health and Management Solutions (CCHMS) explains both as they relate to bull breeding soundness evaluations (BBSEs) and DNA strategies.

“A traditional herd-health relationship starts with discussing health.” says Waylon, “Once we get this streamlined, the next discussion is usually about how to use the ranch resources most effectively, improve performance, replacement selection etc. That leads to which bulls to buy, how to evaluate the success of them during breeding season, and what works best with the genetics and the environment on the ranch.”

Once pre-pubertal bulls are in the sale pen, vets like Waylon end up seeing them at the business end of a probe for semen testing to evaluate “potential competency” (note, this is NOT a measure of fertility). The goal here is to find the ones that are unfit for sale; it’s a pass or fail test. That said, passing a semen test as a 12-month old bull is like saying “if you graduate high school, you will automatically thrive in the real world.” We all know this isn’t true. Context matters. So passing isn’t the be all and end all of anything.

The main components of a BBSE (BBSE image) are the physical exam, palpation of testicles and internal sex glands, measuring scrotal circumference and evaluating the motility and structure of the sperm cells. The latter is tricky. For starters, it’s hard to perform (for the bull and the sperm) on a cold day (most bull sales are in the dead of winter); nervous bulls don’t respond well to the probe; and a variety of stressors (including being semen-tested) reduces semen quality. Not to mention that high growth rate and superior performance may delay the onset of puberty. There’s a reason why the last bull in the sale order rarely fails a semen test!

“There’s enormous unjustified pressure on these young bulls to pass a semen test,” says Waylon, “but there are too many variables to cast the results in stone. Of the physically normal pre-pubertal bulls that we pursue retesting on, 95-97% will eventually pass and be fertile.”

Large scrotal circumference in pre-pubertal bulls doesn’t mean they are more fertile, produce more calves or more weaning weight. In fact, excessive scrotal circumference (more than 40 cm) in pre-pubertal bulls may delay the onset of puberty—so it may take them longer to pass a semen test. Bulls with a smaller scrotal circumference may be just as fertile. It’s not uncommon for a young bull to gain 3, 4 or even 6 cm (!!) as he reaches puberty. If you don’t like your guy’s measurement one day, just wait a week or two.

And at the end of the day, a physically normal bull that fails a semen test or has sub-optimal scrotal circumference can sire as many calves as bulls that pass. We have the evidence. The opposite is true also. Bulls with exceptional semen quality can fail to earn their keep.

There are also welfare implications of sending 20V of electricity into the rectum to stimulate ejaculation, or injuries that occur in the chute and the unnecessary trauma to the penis by unnecessarily breaking a pre-pubertal, normally-occurring frenulum.

“We’ve already started to shift the paradigm around pre-pubertal bulls, and we need to keep educating young vets about the pitfalls of doing this so early in a bull’s life,” says Waylon. “Bulls should still be palpated, measured and evaluated in the chute prior to sale to remove the physically abnormal ones. But basically, you should be buying a bull based on his merit and what value he adds to your genetic program. The semen test of the BBSE is of minimal value.”

So there IS a better way! Use the power of DNA.

First, all potential sires must have a DNA Case Number (the animal’s universal DNA tracking number: this is the “name” of the DNA record or genotype). The majority of purebred sires will already have a genotype on file at the breed association. The vet verifies this during the BBSE and collects hair or tissue if needed. The sample barcode is scanned into Herdtrax, and the submission file is generated and sent to Neogen for processing. Once the file comes back, it’s uploaded and will automatically link the genotype to the animal’s record. This takes 4 – 6 weeks. Even if the animal is gone, you can use semen in the tank—or meat in the freezer!

To acquire parentage, the vet collects a sample from the calf (usually at branding or weaning), scans the barcode, adds the potential sires and the submission file is generated and sent to Neogen, then returned for upload. The upload will assign the sire and indicate it’s verified.

So the DNA strategies are:

• DNA all calves. Index all the bulls by number of progeny, daily service capacity, weaning weight, weaning ADG (WADG), carcass traits and total lbs produced during a breeding season.
• DNA replacements. Identify the sires who produce the calves that thrive in the current environment. These calves have been selected on data and, in some cases, produce the phenotype desired at the ranch.
• DNA Potential AI sire. Gestation can vary by +/-16 days. Keep replacements from the AI sire when clean-up bulls are used immediately after insemination.
• DNA poor calves/ dystocia. Fertility is not the only parameter. Cull bulls who dilute the gene pool with unfavourable genetics or cause undesirable outcomes.
• DNA herds. Heads-up test-breeding of groups of bulls with similar breed, pedigree or source.

Test within same herd or pasture location to evaluate:

  • Sires that work best to maximize heterosis in different herds (breed composition)
  • Sires that thrive in different pasture locations, nutrition (forestry vs native grass)
  • Sires that thrive within the terminal (low-index) vs maternal herd (high-index)

“Then repeat the trends that work,” says Waylon.

      1. Only use progeny from proven, superior bulls and cows for breeding.
      2. Use proven, superior bulls on the high-index herd to produce your own replacements. Collect semen and AI within your own herd prior to bull turnout.
      3. Send individual bulls with superior progeny performance out for the first cycle.
      4. Use sires with proven carcass traits on low-index terminal cows.
      5. Cull and replace individuals in the bottom 10%.

Yes, it’s complicated, and there needs to be an integrated approach to evaluating bulls that includes a thorough physical exam, selective semen testing of questionable or unproven pubertal bulls, and using DNA parentage to index the performance of their offspring.

“Even today, with advances in DNA technology and enhanced traceability through online and chute-side management programs such as Herdtrax, we still rely too much on a stand-alone semen test in an off-season that is not that correlated to actual fertility, performance or the bottom-line,” says Waylon. “It’s time for a change.”

 

 

 

 

 

 

At The Grill feature by William Torres. Data Management: EPDs… are they as easy as 123?

This month’s At The Grill feature by William Torres (former Research Manager at Cattleland Feedyards and popular presenter at Gentec conferences) focuses the ABCs of your EPDs, how to maximize your cattle selection without focusing on too much data to make decisions, and how to help your bottom line.

Have you ever looked at a bull sale catalogue and thought you might need a PhD to figure out what they’re trying to sell you? I mean… how much data is too much data??

At the end of the day, the people trying to sell these animals want to make the most amount of money and offer you all the most relevant information. But if you’re trying to purchase an animal, you want the opposite: the best genetics for the least amount of money.

So what it really comes down to is doing your homework and understanding your needs (much like purchasing a new car). The part most of us struggle with is EPDs and the other information that we’re not sure we really understand. So let’s recap… what is an EPD?

According to the Beef Cattle Research Council, Expected Progeny Differences (EPDs) are estimates of an animal’s genetic merit as a parent. In plain English, this how to predict the specific performance of a bull’s progeny compared to the performance of another bull’s progeny. The keywords here are PREDICT and COMPARE. EPDs for one animal are meaningless unless you compare them to the EPD of another animal.

So, if Sire A has a birth weight EPD of 4.0 and Sire B has a birth weight EPD of -2.0, then calves from Sire B might average 6 pounds lighter at birth than calves from Sire A, assuming the bulls are randomly mated in the same herd (most EPDs are designed to compare sires within a same breed). That is, until multi-breed EPDs come into the picture, like Feed Efficiency for example.

Now that we’re clear as mud, we should be able to buy the best, right? But what is the best? Let’s go back to buying a car. When I used to test bulls for feed efficiency, the question was always, “How do I sell these for the most money?” Unfortunately, there isn’t a simple answer. In any given feed efficiency test, there will be winners and losers. Think of it like an eating contest; if you and I compete against each other, only one of us can win. But the bottom line is, you need to sell ALL those bulls.

Selling is an art form. Whether you’re selling cars or bulls, you need to know the needs of the purchaser. Not everyone has the budget to buy a$100,000 bull (or car), But everyone who walked into the lot (or bull sale), is there to buy something. What are they looking for? Here are some examples:

Horsepower = Birth weight, weaning weight
Fuel efficiency = Average daily gain, conversion, feed efficiency
Longevity = sustainability

On the buyer side of the house, you need to consider your specific production goal. For example, if you sell your calves at weaning, you need to prioritize the EPDs differently than producers who retain ownership through the feedlot. A start-up cow-calf operation will most likely have different budgets and needs than a well-established outfit. Regardless of your needs, don’t be afraid to ask the seller what things really mean. Or contact John Basarab, Director of Beef Operations here at Gentec for help.

Ted Bilyea tells it like it is: Waste not, want not!

“At the global level, unless there’s a major technology change in how we produce food where we don’t need land, we’re going to have a food security problem fairly soon,” predicts Ted Bilyea, Former Executive VP of Maple Leaf Foods Inc. “It’s beginning to unfold in front of us.”

Ted breaks the issue down into the three A’s.

AVAILABILITY
Thirty years ago, about 12% of the world food was supplied by trade. That figure is now close to 25%. That’s pretty fragile. In Canada, we don’t have “availability” problems because 70% of what we consume is grown here, and we still export 50% of production. Our availability issue is that we’re the largest importer of U.S. processed-food in the world.

“Many of the US companies that had processing plants in Canada closed them up after NAFTA,” says Ted. “They no longer needed Canadian processing to sell here, and they already had marketing and distribution set up.

Push come to shove, we might not get everything here that we want to eat but we won’t starve to death either.

ACCESSIBILITY
“That’s when s**t happens,” says Ted. “Covid… closed border with the US… supply chain issues. Especially in the North. Solutions will involve better energy use so they can grow food themselves.”

And we need to do something about food waste. There are two sides to this: what happens before and after food items hit the store. On the before side, issues of rotting, storage, transport, etc. in the developing world can be taken care of with technology transfer, capital investment and political will. Far more troubling everywhere is the threat of disease. For example, China lost half of its hogs due to disease (mostly African swine fever) since 2018. That’s a quarter of all the hogs in the world. Just one single case of BSE (mad cow disease) in Alberta in December 2021 led China, Korea and the Philippines to ban imports of Canadian beef. An outbreak of avian flu in the US in 2015 led to the culling of 75 million poultry, and cost US$879 million to eradicate from production. These are not one-offs.

“On the consumer side, we should stop thinking of the contents of the green box as waste,” says Ted. “It’s an input to somebody else’s business in terms of upcycling. Even meat—because fats become biodiesel. So let’s be careful what we define as waste. It’s all energy in another form. If we’re doing things right, there’s no such thing as waste.”

But there’s a far more insidious issue on the horizon. Globally, we’re coming to the end of the era of abundance, convenience and perfection, food-wise. We’ve taken food for granted for too long. The shift is underway to an era where that may still be true occasionally, locally, depending on the product and location but we’re beginning to look at a future where scarcity is the more likely outcome.

“Productivity is the best indicator of where we’re going,” says Ted. “Supply vs demand is dropping. We don’t have the global security stocks we used to have. Why? Climate change, declining R&D investment in agriculture (Alberta’s RDAR is an exception that proves the rule) and the use of non-renewable groundwater.”

*click picture to enlarge

Eleven percent of the total agriculture trade globally depends on groundwater. In the US, 64% of groundwater is used for irrigation. Fifty percent of that comes from the Ogallala aquifer. The replenishment rate of these aquifers is way down or even zero. Think California. The Ogallala aquifer will take 6,000 years to replenish. When those global aquifers run dry—and they willl!—that 11% of trade will also dry up.

It’s not all doom and gloom. Some companies will move into Canada because they value our competitive advantages. Water is one of them. Another is the prairie grasslands.

“One of the first things I learned at Canada Packers is that you can’t move the feed to the animals,” says Ted. “Most of the world is still trying to defend against that because they want to grow their own animals so they import massive amounts of corn and barley. With the emissions footprint, it makes no sense. It never did. You need tariff barriers and subsidies when you’re not competitive. Canada’s western competitive advantage is built in. We have the grass and the feed. And companies like McDonalds and Loblaws pay a premium for the sustainable beef we grow with it.”

This is, of course, where Gentec steps in and shines. Gentec’s tools for researchers (EnVigour HX™, and the new Feeder and Replacement Heifer Profit Indexes) and projects that demonstrate the value of grazing cattle on grasslands will help producers and Western Canada maintain that competitive advantage.

AFFORDABILITY
People on low or fixed income have survived this period of abundance because food was cheap. Those days are gone. Major countries are running into issues of availability. Increases in yields are slowing dramatically. We’ve brought massive amounts of land into production. That game is over. Now we’re losing land out of production due to climate change.

“If you had to pick a place to live and farm, Western Canada is a great place,” says Ted. “I see a huge demand for meat. I just wish we had more grass on which to raise more cattle with the least GHGs of anybody in the world!”